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CHAPTER

Computer Engineering

9.1 � INTRODUCTION
Why do cars, trucks, planes, ships, and almost everything else today contain comput-
ers? After all, until the 1960s we got along perfectly well without computers. As late 
as 1965, the question, “Should a car or truck or plane or ship or anything else contain 
a computer?,” would have seemed ridiculous. In those days, a computer was not only 
much more expensive than a car, but also bigger.

9.2 � MOORE’S LAW
In the late 1960s, the integrated circuit was invented, and computers began to shrink 
in both size and cost. In the 1990s it was also asserted that “if a Cadillac had shrunk 
in size and cost as fast as a computer did since 1960, you could now buy one with 
your lunch money and hold it in the palm of your hand.” The basic message, how-
ever, was, and remains, valid. From the 1960s until the present, integrated circuits, 
the building blocks of computers, have doubled their computing power every year or 
two. This explosive progress is the result of a technological trend called Moore’s Law 
that states that the number of transistors on an integrated circuit “chip” will double 
every year or two. The name honors electronics pioneer Gordon Moore, who pro-
posed it in 1965. Moore’s Law is not a law of nature, but an empirical rule of thumb, 
and it has held true for four and a half decades. Many people (including Gordon 
Moore) expect Moore’s law will end by around 2025 or 2030.
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Today’s digital computers are so small that, in most applications, size is no longer 
an issue. For example, a computer for controlling the air/fuel mixture in an automo-
bile is typically housed along with its power supply and communication circuitry in 
an assembly about the size of a small book. As a result, people reliably control not 
just the hundreds of horsepower of an automobile, but the delivery of energy rou-
tinely available to them in modern industrial societies while minimizing pollution 
emitted in the course of energy conversion.

The subjects of control and binary logic have taken on a life of their own in 
the form of computers and other information systems. Indeed, such systems have 
become so pervasive as to lead many people to assert that the industrialized world 
changed in the late 20th century from an industrial society to an information society.

The term digital can apply to any number system, such as the base 10 system 
used in ordinary arithmetic. However, today’s computers are based on a simpler 
number system: the base two or binary system. Therefore, this chapter focuses on 
binary logic and computation.

Computation was implemented first by mechanical devices, then by analog 
computers, and today by digital computers. A particularly convenient way to use 
computation to accomplish control is through the use of binary logic. A means of 
summarizing the results of binary logic operations is through truth tables that can be 
expressed as electrical logic circuits. This technique is useful not only in digital con-
trol, but also in other areas of computation, such as binary arithmetic and binary 
codes. Binary arithmetic and information are the basis of computer software. Binary 
logic also enables us to define the engineering variable information. In this chapter 
these topics will be mostly illustrated by reference to a familiar automotive applica-
tion: deciding when a seat belt warning light should be turned on.

As an afterword, the process by which actual computers do these things, the 
hardware–software connection, will be summarized.

Millions of embedded computers (that is, computers placed within other systems 
and dedicated to serving those systems) now can be found in thousands of applica-
tions. Electronic and computer engineers have the job of reproducing this computer 
population, which brings forth a new generation every two or three years. Some 
develop the electronic circuits that are the basis of electronic computation. Others 
devise new computer architectures for using those circuits. Yet others develop the 
“software,” which are the instructions that make computers perform as intended. 
Many other engineers apply these tools to everything from kitchen appliances to 
space vehicles.

9.3 � ANALOG COMPUTERS
For hundreds of years, engineers proved ingenious and resourceful at using mechani-
cal devices to control everything from the rotation of water wheels and windmills 
to the speed of steam engines and the aiming of guns on battleships. However, such 



9.4  From Analog to Digital Computing 183

mechanical systems had major disadvantages. They were limited in their speed and 
responsiveness by the mechanical properties of the components and they had to be 
custom designed for every control challenge.

By the 20th century, this had led engineers to seek more flexible, responsive, and 
general types of controls. As a first step, engineers put together standardized packages 
of springs, wheels, gears, and other mechanisms. These systems also proved capable 
of solving some important classes of mathematical problems defined by differential 
equations. Because these collections of standard mechanisms solved the problems by 
creating a mechanical analogy for the equations, they were called analog computers. 
Bulky and inflexible, they often filled an entire room and were “programmed” by a 
slow and complex process of manually connecting wires and components in order 
to do a computation. Despite these drawbacks, in such applications as predicting 
the tides, determining the performance of electrical transmission lines, or designing 
automobile suspensions, analog computers marked a great advance over previous 
equation-solving methods.

9.4 � FROM ANALOG TO DIGITAL COMPUTING
Meanwhile, a second effort, underway since about 1800, sought to calculate solutions 
numerically using arithmetic done by people. Until about 1950, the word computer 
referred to a person willing to calculate for wages. Typically, these were selected 
members of the workforce whose economic status forced them to settle for relatively 
low pay. It was not until about 1900 that these human computers were given access 
to mechanical calculators and not until the 1920s that practical attempts at fully auto-
mated mechanical calculations were begun.

Meanwhile, as early as the 1820s, beginning with the ideas of the British sci-
entist Charles Babbage, attempts had been made to do arithmetic accurately using 
machinery. Because these proposed machines operated on digits as a human would 
(rather than forming analogies), they were called digital computers. Digital tech-
niques were also used to control machinery. For example, the French inventor Joseph 
Marie Jacquard (1752–1834) used cards with holes punched in them as a digital 
method to control the intricate manipulations needed to weave large complex silk 
embroideries.

Humans learn digital computing using their 10 fingers.1 Human arithmetic 
adapted this 10-digit method into the decimal system. Digital computers can be built 
on a decimal basis, and some of the pioneers, such as Babbage in the 1840s and the 
team at the University of Pennsylvania who, in the 1940s built a very early electronic 
digital computer, the ENIAC, adopted this decimal system.

1The word digitus is literally “finger” in Latin, indicating the discrete nature of such counting schemes.
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9.5 � BINARY LOGIC
However, computer engineers quickly found that a simpler system less intuitive to 
humans proved much easier to implement with electronics. This is the binary system, 
based on only two digits: one and zero. The Jacquard loom was such a binary sys-
tem, with a hole in a card representing a 1 (one) and the lack of a hole representing 
0 (zero). In other applications, turning on a switch might represent a 1, and turning 
it off might represent a 0. The logic and mathematics of this system were developed 
mainly by the British mathematician George Boole (1815–64), whose contributions 
were so important that the concept is often referred to as Boolean algebra.

Binary logic begins with statements containing variables symbolized by letters 
such as X or Y. The statement can assert anything whatsoever, whether it is “The 
switch is open” or “There is intelligent life on a planet circling the star Procyon.” 
The variable representing the statement can be assigned either of two values, 1 or 0, 
depending on whether the statement is true or false. (We will adopt the convention of 
using the value 1 for true statements and the value 0 for false ones.)

Binary logic permits three, and only three, operations to be performed, AND, 
OR, and NOT:
  

AND (sometimes called “intersection” and indicated by the symbol • or *) 
means that, given two statements X and Y, if both are true, then X • Y = 1. If 
either one is false, then X • Y = 0. For example, the statement “It is raining (X) 
and the sun is out (Y)” is true only if both it is raining and the sun is out.

OR (sometimes called “union” and indicated by the symbol + ) the inclusive “or” 
means that, given two statements X and Y, if either one or both are true, then 
X + Y = 1, while only if both are false is X + Y = 0. For example, the statement “It is 
raining (X) or the sun is out (Y)” is true in all cases except when both are not true.

NOT (sometimes called “negation” and indicated here by the postsymbol ′ as 
in X′, but sometimes indicated in other texts with an overbar as in Ẋ) is an 
operation performed on a single statement. If X is the variable representing 
that single statement, then X′ = 0 if X = 1, and X′ = 1 if X = 0. Therefore, if X is 
the variable representing the statement “It is raining,” then X′ is the variable 
representing the statement “It is not raining.”

  
These three operations provide a remarkably compact and powerful tool kit for 

expressing any logical conditions imaginable. A particularly important type of such 
a logical condition is an “if–then” relationship, which tells us that if a certain set of 
statements has some particular set of values, then another related statement, often 
called the target statement, has some particular value.

Consider, for example, the statement “If a cold front comes in from the south or 
the air pressure in the north remains constant, but not if the temperature is above 
50°F, then it will rain tomorrow.” The target statement and each of the other state-
ments can be represented by a variable. In our example, X can be the target statement 
“It will rain tomorrow,” and the three other statements can be expressed by A = “a 
cold front comes in from the south,” B = “the air pressure in the north is constant,” 
and C = “the temperature is above 50°F”. The connecting words can be expressed 
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using their symbols. Thus, this long and complicated sentence can be expressed by 
the short and simple assignment statement:

	 X = A + B · C ′	

This is not a direct equivalence in which information flows both ways across the 
equation. Specifically, in an assignment,2 the information on the right-hand side is 
assigned to X but not vice-versa. This distinction is required because of the way that 
computers actually manipulate information.

However, as written above, the statement still presents a problem. In which order 
do you evaluate the operations? Does this make a difference? A simple example will 
show that it does make a difference! Consider the case A = 1, B = 0, C = 1. Let the 
symbol + is used first, the symbol • next, and the symbol ′ last. Then in the preceding 
statement, A + B = 1 + 0 = 1 and (A + B) • C = 1 • C = 1 • 1 = 1. But since C′ = 1′ = 0, then 
X = 0. But if the symbols are applied in the reverse order (′ first, • next, and + last), 
then C′ = 1′ = 0, B • C′ = 0 • 1 = 0, A + B • C′ = 1 + 0 = 1, and X = 1.

So, to get consistent results when evaluating logic statements, a proper order must 
be defined. This is similar to standard precedence rules used in arithmetic. That order 
is defined as follows:
  
	1.	 �All NOT operators must be evaluated first, then
	2.	 �all AND operators (starting from the right if there is more than one) second, and
	3.	 �all OR operators (starting from the right if there is more than one) are evaluated 

third.
  

If a different order of operation is desired, that order must be enforced with paren-
theses, with the operation within the innermost remaining parentheses being evalu-
ated first, after which the parentheses is removed. In our example above, the proper 
answer with explicit parentheses would have been written X = A + (B • C′) and evalu-
ated as X = 1 + (0 • 1′) = 1. However, the value of the expression X = (A + B) • C′ is X 
= (1 + 0) • 1′ = 1 • 1′ = 1 • 0 = 0.

 

EXAMPLE 9.1
Consider the following statement about a car: “The seat belt warning light is on.” Define the logic 
variable needed to express that statement in binary logic.

Need: 		�  Logic variable (letter) = “ …” where the material within the quotes expresses the 
condition under which the logic variable has the value 1 = true and 0 = false.

Know–How:	� Choose a letter to go on the left side of an equivalence. Express the statement in 
the form it would take if the content it referred to is true. Put the statement on 
the right side in quotes.

Solve: 		�  W = “the seat belt warning light is on.”
 

This example is trivially simple, but more challenging examples can arise quite 
naturally. For example, if there are two or more connected constraints on a given 
action, then the methods of Boolean algebra are surefire ways of fully understanding 
the system in a compact way.

2In some programming languages such logic statements are written with an assignment command, 

“: = ” and not just an “ = ” command so that our Boolean statement could be written as X: = A + B · C′ to 
reinforce the fact that these are not reversible equalities.
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EXAMPLE 9.2
Consider the statement involving an automobile cruise control set at a certain speed (called the “set 
speed”): “Open the throttle if the speed is below the set speed and the set speed is not above the 
speed limit.” Express this as a logic formula, and evaluate the logic formula to answer the question: 
“If the speed is below the set speed and the set speed is above the speed limit, then will the throttle 
be opened?” Answer using these variables: the car’s speed is 50. miles per hour, the set speed is 60. 
miles per hour, and the speed limit is 45 miles per hour.

Need: 	� A binary logic formula expressing the statement “Open the throttle if the speed is below 
the set speed and the set speed is not above the speed limit,” and an evaluation of the 
formula for the situation when the speed is 50. miles per hour, the set speed is 60. miles 
per hour, and the speed limit is 45 miles per hour.

Know: 	�Any statement capable of being true or false can be represented by a variable having 
values 1 = true and 0 = false, and these variables can be connected by AND (•), OR (+), 

and NOT (′).
How: 	� Define variables corresponding to each of the statements, and use the three connectors 

to write a logic formula.
Solve:	 Let X = “throttle is open.”

Let A = “speed is below set speed.”
Let B = “set speed is above speed limit.”

Then the general logic formula expressing the target statement is X = A • B′
If the speed is 50. miles per hour, and the set speed is 60. miles per hour, then A = 1. If the set speed 

is 60. miles per hour, and the speed limit is 45 miles per hour, then B = 1. Substituting these values, the 

general logic formula gives X = 1 • 1′. Evaluating this in the proper order gives X = 1 • 0 = 0.
In plain English, if the speed is below the set speed, and the set speed is above the control speed 

limit, the throttle will not open.
 

 

EXAMPLE 9.3
Suppose we want to find a Boolean expression for the truth of the statement “W = the seat belt warn-
ing light should be on in my car,” using all of the following Boolean variables:

Case 1:
D is true if the driver seat belt is fastened.
Pb is true if the passenger seat belt is fastened.
Ps is true if there is a passenger in the passenger seat.

Case 2:
For actuation of the warning light, include the additional Boolean variable: M is true if the motor 
is running.

Need: 	� W = ?
Know–How: �Put the W variable on the left side of an assignment sign W = and then array the 

variables on the other side of the assignment sign.

Case 1
(a)	� Put D, Ps, and Pb on the right side of the assignment sign. Thus, the temporary (for now, incor-

rect) assignment statement is W = D Ps Pb.

(b)	�Connect the variables on the right side with the three logic symbols •, +, and ′ so that the rela-
tionship among the variables on the right side correctly represents the given statement.

A good way to do this is to simply put the symbols the way they should appear in the if state-
ments. For example, since part of the if statement Pb contains the words “the passenger’s seat belt 

is fastened,” it should also contain a “not.” The corresponding logic variable will appear as Pb′. 
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Also, you only care about the passenger’s seat belt if the passenger is sitting in the seat, that is, the 
intersection between these two variables.

Solve: 	� A solution in English is: “if the driver’s seat belt is not fastened” or “if there is a pas-
senger in the passenger seat” and “the passenger’s seat belt in not fastened”, then “the 

seat belt warning light should be on in my car”, or W = D′ + Ps ·Pb′.

Once written, a logic equation can now be solved for any particular combination of variables. 
This is done by first plugging in the variable and then carrying out the indicated operation.

Case 2
For activation of the warning light, the light will go on if the motor is running, and if either the 
driver’s seat belt is not fastened or if there is a passenger in the passenger seat and that seatbelt is 
not fastened. This is written as:

	
W = M ·

(
D ′ + Ps · Pb ′

)
	

 

9.6 � TRUTH TABLES
It is often convenient to summarize the results of a logic analysis for all possible 
combinations of the values of the input variables of an “if … then” statement. This 
can be done with a truth table. It is simply a table with columns representing vari-
ables and rows representing combinations of variable values. The variables for the 
“if” conditions start from the left, and their rows can be filled in systematically to 
include all possible combinations of inputs. The column at the far right represents 
“then.” Its value can be computed for each possible input combination.

 

EXAMPLE 9.4
Consider the condition in Example 9.2: open the throttle if the speed is below the set speed and the 
set speed is not above the speed limit. The “if” conditions are A = “speed is below the speed limit” 
and B = “set speed is above the speed limit.” The “then” condition is X = “open the throttle.” The 
truth table is set up as shown here.

A B B′ X = A • B′

Need: 	� All 16 entries to the truth table.
Know: 	�Negation operator, ′ and the AND operator •.
How: 	� Fill in all possible binary combinations of statements A and of B.

3If the input had three columns, A, B, and C, you would count from 0 to 7 in binary (000 to 
111). If four columns, the 16 entries would count from 0 to 15 in binary (000 to 1111), and  
so on.
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Solve: 	� One convenient way of making sure you insert all the possible input values is to “count” 
in binary from all zeroes at the top to all ones at the bottom. (If you’re not already able 
to count in binary, this is explained on the next page or so.) In this example, the top line 
on the input side represents the binary number 00 (equal to decimal 0), the second line 
is 01 (decimal 1), the third is 10 (decimal 2), and the fourth is 11 (decimal 3).3

A B B′ X = A • B′

0 0
0 1
1 0
1 1

Next the value of the “then” (“open the throttle”) is computed for each row of inputs (this is 

done here in two steps, first computing B′, then computing X = A • B′).

A B B′ X = A • B′

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

In English, this truth table is telling us that the only condition under which the control will open 
the throttle (X = 1) is when both the speed is below the set speed and the set speed is below the speed 
limit. This is the way we should want our cruise control to operate!

 

Truth tables can also be conveniently expressed as electric circuits. Indeed, this capa-
bility is the essence of computing. This capability is further explored in the exercises.

9.7 � DECIMAL AND BINARY NUMBERS
In the decimal or base 10 number system, digits are written to the left or right of a dot 
called the decimal point to indicate values greater than one or less than one. Each digit 
is a placeholder for the next power of 10. The digits to the left of the decimal point are 
whole numbers, and as you move to the left every number placeholder increases by a 
factor of 10. On the right of the decimal point the first digit is tenths (1/10), and as you 
move further right every number placeholder is 10 times smaller (see Fig. 9.1).

The number 6357. has four digits to the left of the decimal point, with “7” in 
the units place, “5” in the tens place, “3” in the hundreds place and 6 in the thou-
sands place. You can also express a decimal number as a whole number plus tenths, 

P

FIGURE 9.1

The structure of a decimal number.
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hundredths, thousandths and so forth. For example, in the number 3.76, the 3 to the 
left of the decimal point is the “whole” number, the 7 on the right side of the decimal 
point is in the “tenths” position, meaning “7 tenths” or 7/10, and the 6 is in the hun-
dredths position. So, 3.76 can be read as: “3 and 7 tenths and 6 hundredths”.

There is nothing that requires us to have 10 different digits in a number system. 
The base-10 number system probably developed because we have 10 fingers, but if 
we happened to have eight fingers instead, we would probably have a base-8 number 
system. In fact, you can have a base-anything number system. There are often rea-
sons to use different number bases in different situations.

The binary4 (base 2) number system is similar to the decimal system in that digits 
are placed to the left or right of a “point” to indicate values greater than one or less than 
one (see Fig. 9.2). For binary numbers, the first digit to the left of the “binary point” is 
called the units. As you move further to the left of the binary point, every placeholder 
increases by a factor of 2. To the right of the binary point the first digit is half (1/2), 
and as you move further to the right every placeholder number becomes half again 
smaller. Table 9.1 below shows a few equivalent decimal and binary whole numbers.

So, how do you convert binary numbers to decimal numbers? Several examples 
are given below to show the steps in convert several binary numbers to decimal 
numbers.
  
	1.	 �What is 1111 in decimal?
	 •	 �The “1” in the leftmost position is in the “2 × 2 × 2” (23) position, so that 

means 1 × 2 × 2 × 2 = 8
	 •	 �The next “1” is in the “2 × 2” (22) position, so that means 1 × 2 × 2 = 4
	 •	 �The next “1” is in the “2” (21) position, so that means 1 × 2 = 2
	 •	 �The last “1” is in the units (20 = 1) position, so that means 1 × 1 = 1
	 •	 �Answer: 1111 = 8 + 4 + 2 + 1 = 15 in decimal.
	2.	 �What is 1001 in decimal?
	 •	 �The “1” in the leftmost position is in the “2 × 2 × 2” (23) position, so that 

means 1 × 2 × 2 × 2 = 8

4The word binary comes from “bi-” meaning two. We use it in words such as “bicycle” (two wheels) 
and “binocular” (two eyes).

P

FIGURE 9.2

The structure of a binary number.

Table 9.1  Decimal and Binary Numbers.

Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Binary: 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 11011110 1111
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	 •	 �The next “0” is in the “2 × 2” (22) position, so that means 0 × 2 × 2 = 0
	 •	 �The next “0” is in the “2” (21) position, so that means 0 × 2 = 0
	 •	 �The last “1” is in the units (20) position, so that means 1 × 1 = 1
	 •	 �Answer: 1001 = 8 + 0 + 0 + 1 = 9 in decimal
	3.	 �What is 1.1 in decimal?
	 •	 �The “1” on the left side of the binary point is in the units (20) position, so 

that means 1 × 1 = 1
	 •	 �The 1 on the right side is in the “halves” (2−1) position, so that means 

1 × (1/2) = 0.5
	 •	 �So, 1.1 is “1 and 1 half” = 1.5 in decimal
	4.	 �What is 10.11 in decimal?
	 •	 �The “1” in the leftmost position is in the “2” (21) position, so that means 

1 × 2 = 2
	 •	 �The “0” is in the units (20) position, so that means 0 × 1 = 0
	 •	 �The first “1” on the right of the point is in the “halves” (2−1) position, so that 

means 1 × (1/2) = 0.50
	 •	 �The last “1” on the right side is in the “quarters” (2−2) position, so that 

means 1 × (1/4) = 0.25
	 •	 �So, 10.11 is 2 + 0  + 1/2 + 1/4 = 2.75 in decimal
  

A single binary digit (0 or 1) is called a “bit” For example, the binary number 
11,010 has five bits. The word bit is made from the words “binary digit” Bits are usu-
ally combined into 8-bit collections called byte. With an 8-bit byte, you can represent 
256 values ranging from 0 to 255, as shown below:

0 = 00000000
1 = 00000001
2 = 00000010
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
254 = 11111110
255 = 11111111

Bytes often come with prefixes like kilo, mega, and giga, as in kilobyte, mega-
byte, and gigabyte. Table 9.2 lists the actual sizes of these binary numbers.

Table 9.2  Binary Number Byte Prefixes.

Name Size

Kilo (K) 210 = 1024
Mega (M) 220 = 1,048,576
Giga (G) 230 = 1,073,741,824
Tera (T) 240 = 1,099,511,627,776
Peta (P) 250 = 1,125,899,906,842,624
Exa (E) 260 = 1,152,921,504,606,846,976
Zetta (Z) 270 = 1,180,591,620,717,411,303,424
Yotta (Y) 280 = 1,208,925,819,614,629,174,706,176
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A terabyte hard drive actually stores 1012 bytes.5 How could you possibly need 
a terabyte of disk space? When you consider all the digital media available today 
(music, games, and video), it is not difficult to fill a terabyte of storage space. 
Terabyte storage devices are fairly common, and indeed there are some petabyte 
storage devices available.

9.8 � BINARY ARITHMETIC
The value of a bit depends on its position relative to the “binary point.” For example, 
the binary number 11,010.101 has a decimal value computed from the second and third 
rows of Table 9.3 as 16 × 1 + 8 × 1 + 4 × 0 + 2 × 1 + 1 × 0 + 0.500 × 1 + 0.250 × 0 + 0.125 
× 1 = 26.625.

Let’s begin with the Rules of Binary Addition.

	

0+0=0
0+1=1
1+0=1
1+1=10, so carry the 1 to the next bit and save the 0 	

For example, adding 010 (digital 2) to 111 (digital 7) gives:

	

010
+ 111

1001 (digital 9) 	

Binary addition is conceptually identical to decimal addition. However, instead 
of carrying powers of 10, one carries powers of two. Here are the formalized steps to 
follow for the carry digits:
  
	1.	 �Starting at the right, 0 + 1 = 1 for the first digit (No carry needed)
	2.	 �The second digit is 1 + 1 = 10 for the second digit, so save the 0 and carry the 1 

to the next column
	3.	 �For the third digit, 0 + 1 + 1 = 10, so save the zero and carry the 1
	4.	 �The last digit is 0 + 0 + 1 = 1

5The capacities of computer storage devices are typically advertised using their SI standard values, but 
the capacities reported by software operating systems uses the binary values. The standard SI terabyte 
(TB) contains 1,000,000,000,000 bytes = 10,004 or 1012 bytes. However, in binary arithmetic, a terabyte 
contains 1,099,511,627,776 bytes = 10,244 or 240 bytes.

Table 9.3  Converting the Binary Number 11010.101 to a Decimal Number.

Placeholder 24 23 22 21 20 . 2−1 2−2 2−3

Bit 1 1 0 1 0 . 1 0 1
Decimal value 16 8 4 2 1 . 1/2 = 0.500 1/4 = 0.250 1/8 = 0.125
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	5.	 �So the answer is 1001 (digital 9 - you can see it is correct since decimal 
2 + 7 = 9)

  
Binary subtraction is conceptually identical to decimal subtraction. However, 

instead of borrowing powers of 10, one borrows powers of two.

Rules of Binary Subtraction

	

0−0 = 0
0 − 1 = 1, and borrow 1 from the next more significant bit
1 − 0 = 1
1 − 1 = 0  	

The following examples illustrate “borrowing” in binary subtraction.

	

10 100 1010
− 1 − 10 − 110

1 10 100 	

Can you complete Table 9.4? You can self-check against their decimal equivalents.

The process of binary subtraction may be viewed as the addition of a negative 
number. For example, 3–2 may be viewed as 3 + (−2). To do this you must determine 
the negative representation of a binary number. One way of doing this is with the 
one’s complement.

The one’s complement of binary number is found by changing all the ones to 
zeroes and all the zeroes to ones as shown below:

Number One’s Complement

10,011 01100
101,010 010101

To subtract a smaller number from a larger number using the one’s complement 
method you:
  
	1.	 �Determine the one’s complement of the smaller number,
	2.	 �Add the one’s complement to the larger number,
	3.	 �Remove the final carry and add it to the result (this step is called the “end-

around carry”).
  

Table 9.4  Simple Binary Arithmetic Examples.

Example 1 Example 2 Practice 1 Practice 2

Binary Decimal Binary Decimal Binary Decimal Binary Decimal

1001 9 1001 9 1011 1011
+101 +5 −101 −5 +110 −110
1110 14 100 4
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EXAMPLE 9.5
Do the following subtraction: 11001 (decimal 25)–10011 (decimal 19).

Need: 	� 11001–10011 = ______? (a binary number)
Know–How: Step1: The one’s complement of 10,011 is 01,100

Step2: Adding the one’s complement to the larger number gives 
01100 + 11001 = 100101
Step3: Removing the final carry and adding it to the result gives 00101 + 1 = 00,110

Solve: 11,001 – 10,011 = 110. To verify that this is correct, convert each base 2 number to deci-
mal and repeat the subtraction, or 25 − 19 = 6.

 

To subtract a larger number from a smaller number, the one’s complement method 
is as follows:
  
	1.	 �Determine the one’s complement of the larger number,
	2.	 �Add the one’s complement to the smaller number (the result is the one’s 

complement of the answer),
	3.	 �Take the one’s complement of the result to get the final answer. Don’t forget to 

add the minus sign since the result is negative.
  

 

EXAMPLE 9.6
Do the following subtraction: 1001 (decimal 9)–1101 (decimal 13).

Need: 	� 1001–1101 = ? (a binary number)
Know–How: Step1: The one’s complement of the larger number 1101 is 0010

Step2: Adding the one’s complement to 1001 gives 0010 + 1001 = 1011
Step3: Add a minus sign to the one’s complement of 1011 to get 1001–1101 = -0100

Solve: 1001 – 1101 = –100. To verify that this is correct, convert each base 2 number to decimal 
and repeat the subtraction, or 9 – 13 = –4.

 

The rest of the familiar arithmetic functions can also be carried out in binary. 
Fractions can be expressed in binary by means of digits to the right of a binary point. 
Once again, powers of 2 take the role that powers of 10 play in digital arithmetic. 
Thus, the decimal fraction 0.5 (i.e., ½) is the binary fraction 0.1 and the decimal frac-
tion ¼ is the binary fraction 0.01, and so on. A fraction that is not an even power of 
1/2 can be expressed as a sum of binary numbers. Thus, the decimal ⅜ = 0.0011 in 
binary, which is the sum of decimal ¼  +  ⅛.

Multiplication and division can be carried out using the same procedures as in 
decimal multiplication and “long division.” The only complication is, again, system-
atically “carrying” and “borrowing” in powers of two, rather than powers of 10. Here 
we only give the rules for binary multiplication.

Rules for Binary Multiplication

	

0×0=0
0×1=0
1×0=0
1×1=1, and no carry or borrow bits  	
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Rules for Binary Division.
The good news is that binary division is a little easier than decimal division 

because instead of having to guess how many times the divisor fits into the dividend, 
in binary division the answer will either be 0 or 1. But because division involves mul-
tiplication and subtraction operations which may also involve “borrowing” from the 
next digit, binary division is somewhat more complicated than binary multiplication. 
For example, suppose we want to divide 15 by 5 in binary. Since 5 in binary is 101 
and 15 in binary is 1111, their binary division looks like this:

	

11
1011111

−1010
0101
−101

0 	

So, the answer is 11 (or 3in decimal).

 

EXAMPLE 9.7
If a powerful race car has an air to fuel ratio (A/F) of 15 [kg air]/[kg fuel] and the air intake draws 
in 1.5 kg of air per second, how much fuel must be injected every second? Solve in binary to five 
significant binary digits.

Need: 	� Fuel rate = ______ kg fuel/s in binary?
Know–How: �Fuel flow rate = (F/A) × 1.5 kg air/s = (1/15) [kg fuel]/[kg air] × 1.5 [kg air/s] = 0.10 

[kg fuel/s].
To illustrate binary arithmetic, let’s break down this problem into two separate ones. While 

unnecessary to do this, one will illustrate binary division and binary multiplication.
The division problem will be 1/15 (decimal) = 1/1111 (binary), and the multiplication problem 

will take the solution of that problem and then multiply it by 1.5 (decimal) = 1.1 (binary).
Solve: 	� Start with 1/1111, then binary multiply that answer by 1.1.

0.00010001

�1.1 

0.00010001

0.00001000

0.00011001

.00010001

1111  1.00000000
1111

10000
1111

1

Therefore, the fuel flow rate = 0.00011001 kg/s (in binary).
Checking in decimal: (1/15) × 1.5 = 0.10 and 0.00011001 = 0/2 + 0/4 + 0/8 + 1/16 + 1/32 + 0/6

4 + 0/128 + 1/256 = 0.098 (to get the closer answer of 0.10 we would need to use more significant 
(binary) figures.

 

Many times each second, a computer under the hood of an automobile receives 
a signal from an air flow sensor, carries out a binary computation such as the one 
shown in this example, and sends a signal to an actuator that causes the right amount 
of fuel to be injected into the air stream in order to maintain the desired air-fuel ratio. 
The result is much more precise and reliable control of fuel injection than was pos-
sible before computers were applied to automobiles.
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9.9 � BINARY CODES
We can now see how 0 and 1 can be used to represent “false” and “true” as logic 
values, while also of course 0 and 1 are numeric values. It is also possible to use 
groups of 0s and 1s as “codes.” The now outdated Morse code is an example of a 
binary code, while the genetic code is based on just the pairings of four, rather than 
two, chemical entities known as bases.

Suppose we want to develop unique codes for the following nine basic colors: 
red, blue, yellow, green, black, brown, white, orange, and purple. Can we do this with 
a three-bit code (three 0s or 1s [bits])? No, since there are only eight combinations 
of three bits (note: 23 = 8): namely 000, 001, 010, 011, 100, 101, 110, 111. Table 9.5 
contains a possible four-bit code that would work, but of course it is only one of 
several, since there are 24 = 16 possible combinations of a four-bit code. If we have N 
bits, we can code 2N different colors.

9.10 � HOW DOES A COMPUTER WORK?
How can these abstract ideas of Boolean algebra, binary logic, and binary numbers be 
used to perform computations using electrical circuits, particularly switches (which 
we will study in a later chapter)? The modern computer is a complex device, and any 
answer we give you here is necessarily oversimplified. But the principles are suffi-
cient to give you some insight. For this discussion we will need to know what a cen-
tral processing unit (CPU), does and what a computer memory is (which can take 
such forms as read-only memory [ROM] and random access memory [RAM]).

The “smart” part of the computer is the CPU. It is just a series of registers, which 
is nothing but a string of switches. These switches can change their voltage states 
from “off” (nominally a no voltage state) to “on” or +5 V above ground. The early 
personal computers (or PCs) used only 8-bit registers and modern ones use 64 or 128, 
but we can think in terms of the 8-bit registers (The notation x, y in Table 9.6 means 
either state x or state y.).

Table 9.5  Possible set of Binary Numbers for Colors.

Color Binary Equivalent Color Binary Equivalent

Red 0000 Brown 0101
Blue 0001 White 0110
Yellow 0010 Orange 0111
Green 0011 Purple 1000
Black 0100

Table 9.6  Eight-Bit Register.

Bit # 7 6 5 4 3 2 1 0

Voltage 0 or  
5 (0,5)

0 or  
5 (0,5)

0 or  
5 (0,5)

0 or  
5 (0,5)

0 or  
5 (0,5)

0 or  
5 (0,5)

0 or  
5 (0,5)

0 or  
5 (0,5)

Bits 0 or  
1 (0,1)

0 or  
1 (0,1)

0 or  
1 (0,1)

0 or  
1 (0,1)

0 or  
1 (0,1)

0 or  
1 (0,1)

0 or  
1 (0,1)

0 or  
1 (0,1)
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This register can contain 28, or 256, discrete numbers or addresses. What the CPU 
addresses is the memory in the computer. You can think of memory as a pigeonhole 
bookcase with the addresses of each pigeonhole preassigned.6

If we have just 256 of these pigeonholes in our memory, our CPU can address each 
of them. If we want to calculate something, we write a computer code in a suitable 
language that basically says something like: Add the number in pigeonhole 37 to that 
in pigeonhole 64, and then put the contents in pigeonhole 134. The binary bits can 
represent numbers, logic statements, and so on. All we then need to do is to be able 
to send out the results of our binary calculations in a form we can read. For example, 
we can decide that the contents of pigeonhole 134 is an equivalent decimal number.

If, in the above example, we identify the program input as what is in pigeonholes 
37 and 64, and the program output is pigeonhole 134, the computer is constructed 
essentially as in Fig. 9.3 to accomplish its mission.

A computer is made up of hardware (electrical circuits containing such compo-
nents as transistors). How the computer is instructed to execute its functions is man-
aged by software (the instructions that tell the components what to do).

Part of the hardware of the computer that we have so far ignored is an internal 
clock. One might view the software as a list of instructions telling the computer 
what to do every time the clock ticks. This list of instructions includes the normal 

6M. Sargent III and R. L. Shoemaker, The IBM PC from the Inside Out (Reading, MA: Addison–
Wesley Publishing Co. Inc., revised edition, 1986), p. 21.

Program Memory

Outputs

Data Memory

Inputs

CPU

FIGURE 9.3

The central processing unit (CPU).
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housekeeping functions that the computer carries out regularly (such as checking 
whether a user has entered in any keystrokes on the keyboard in the very short time 
interval since the last time this was checked). But it can also include downloading 
into a portion of the computer’s memory called program memory, a special list 
of instructions called a stored program, and then executing that stored program. 
Examples of stored programs are a word processor and a spreadsheet program.

Once this stored program is downloaded into the memory, the CPU carries out 
this stored program step by step. Some of those steps involve carrying out com-
putations, which are executed in binary arithmetic by the CPU using the methods 
described in this chapter. In some cases, the result of the computation determines 
which of the stored program’s instructions is the next one that should be carried out. 
This flexibility regarding the order in which instructions are carried out is the basis 
of the computer’s versatility as an information processing system.

Software in this binary form is called machine language. It is the only language 
that the computer understands. It is, however, a difficult language for a human to 
write or read. So computer engineers have developed programs that can be stored in 
the computer that translate software from a language that humans understand into 
machine language.

The types of language that humans understand are called higher-level languages. 
These languages consist of a list of statements somewhat resembling ordinary 
English. For example, a higher-level language might contain a statement such as “if 
x < 0, then y = 36.” Examples of higher-level languages are C++, BASIC, and Java. 
Most computer programs are originally written in a high-level language.

The computer then translates this high-level language into machine language. 
This translation is typically carried out in two steps. First, a computer program called 
a compiler translates the statements of the high-level language into statements in a 
language called assembly language that is closer to the language that the computer 
understands. Then another computer program called an assembler translates the 
assembly language program into a machine language program. It is the machine 
language program that is actually executed by the computer.

The personal computers that we all use, typically by entering information through 
such devices as a keyboard or mouse, and producing outputs on a screen or via a 
printer, are called general-purpose computers. As the name suggests, they can be 
used for a wide range of purposes, from game playing to accounting to word process-
ing to monitoring scientific apparatus.

Not all computers need this wide range of versatility. There is another important 
class of computers directed at narrower ranges of tasks. These computers are called 
embedded computers (Fig. 9.4).

As their name suggests, these computers are embedded within a larger system. 
They are not accessible by keyboard or mouse, but rather receive their inputs from 
sensors within that larger system. In an automobile, there may be dozens of embed-
ded computers. There might be, for example, an embedded computer for control-
ling a car’s stereo system, another recording data for automated service diagnostics, 
another for the operation of the brakes, another for the steering conditions, and yet 
another for fuel control.
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9.11 � COMPUTER SECURITY
Computer security (or cyber security) is the protection of computer systems from 
theft or damage to their hardware, software or electronic data, as well as from disrup-
tion or of the services they provide. The field is growing in importance because of our 
increasing use of the Internet and of wireless networks such as Bluetooth and Wi-Fi, 
and of “smart” devices such as cellphones.

Malware is short for malicious software that can be used to compromise com-
puter functions, steal data, bypass access controls, or otherwise cause harm to your 
computer. Malware is a broad term that refers to a variety of malicious programs. The 
most common types of malware are shown in Table 9.7.

These steps will help to safeguard your computer:
  
	•	� Use antivirus protection and a firewall.
	•	� Get antispyware software.
	•	� Increase your browser security settings.
	•	� Avoid questionable Web sites.
	•	� Only download software from sites you trust.
	•	� Don’t open messages from unknown senders.
	•	� Immediately delete messages you suspect to be spam.

SUMMARY
Although analog computers have been of some historical importance, digital comput-
ers do the most important work in today’s advanced technologies. An engineer today 
must understand the principles of digital computation that rest on the immensely 

Embedded System+

Outputs

Engine
Control

Data Memory

Program Memory

CPU
Inputs

Logic Gates
Composed of Switches

FIGURE 9.4

Schematic for an embedded automotive computer.
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powerful concepts of Boolean algebra, binary logic, truth tables, binary arith-
metic, and binary codes. These concepts enable an engineer to make a first effort at 
defining the concept of information. Consequently, computer security is one of the 
major computer challenges of the 21st century.

EXERCISES
	 1.	 �A popular ditty of the late 19th and early 20th-century railroad era had the fol-

lowing words.

Passengers will please refrain From flushing toilets While the train Is standing 
in the station I love you.

	 	  �It is sung to the tune of Humoresque by the 19th-century Czech composer 
Antonin Dvorak.7 For this little ditty, define a variable S expressing whether or 
not the train is in the station, a variable M expressing whether or not the train 
is moving (“standing” meaning “not moving”), and a variable F expressing 

7You can find the music at: http://www.youtube.com/watch?v=WmAZoexenx8.

Table 9.7  Common Types of Computer Malware.

Trojan Horse A trojan horse is program that is packaged with an application, 
usually free, such as a screen saver or computer game. Once the 
program initiates, a virus is released that creates problems for your 
computer without your knowledge.

Virus Computer viruses infect computers to gain control and steal data. 
They are spread through by visiting an infected website, clicking on 
an executable email file, viewing an infected advertisement, or con-
necting to infected removable storage devices such as USB drives.

Worm A worm is software that copies itself repeatedly into a computer’s 
memory using up all available RAM. When you open an email 
attachment containing a worm it looks through your address books 
choosing names at random and sends them copies of itself.

Adware Pop-up advertisements. It is not uncommon for adware to come 
bundled with spyware that is capable of tracking user activity and 
stealing information.

Bot A bot (short for “robot”) is an automated internet program that 
perform functions such as capturing email addresses from website 
contact forms, address books, and email programs, then add them 
to a spam mailing list.

Spyware Spyware is software that monitors a user’s activity without their 
knowledge, such as collecting keystrokes and data harvesting 
(account information, internet logins, financial data, etc.).

Phishing Phishing is a term used to describe individuals who try to scam 
users. They send emails or create web pages that look like legiti-
mate companies designed to collect an individual’s online bank, 
credit card, or other login information.
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the fact that the toilet may be flushed. (Ans.: S = “the train is the station,” 
M = “the train is moving” (or you could use its negation, M′ meaning the 
train is stationary), and F = “the toilet may be flushed”).

	 2.	 �For the ditty in Exercise 1, (a) express as a logic formula the conditions under 
which one may flush the toilet, (b) evaluate the formula you wrote in (a) for 
M = 1 and S = 1, and (c) express in words the meaning of your answer to (b). 
(Assume that any behavior not explicitly forbidden is allowed.)

	 3.	 �Rework Example 9.2 to express and evaluate the logic formula to answer the 
question “If the speed is below the set speed and the set speed is above the 
speed limit, then will the throttle be opened?”

	 4.	 �In Example 9.3, include the additional Boolean variable that for actuation of 
the warning light the driver’s door must be closed (Ddoor is true if the driver’s 
door is closed).

	 5.	 �Consider the following logic variables for a car:
Db = “the driver’s seat belt is fastened”
Pb = “the passenger seat belt is fastened”
W = “the seatbelt warning should be on in my car”

Write a sentence in English that expresses the logic equation W = Db′ + Pb′. 
(Ans: W = “If either the driver’s seat belt is not fastened or the passenger’s seat 
belt is not fastened, the seatbelt warning light should be on.”)

	 6.	 �Consider the following logic variables for a car:
W = “the seatbelt warning light is on”
D = “a door of the car is open”
Ps = “there is a passenger in the passenger seat”
K = “the key is in the ignition”
M = “the motor is running”
Db = “the driver’s seat belt is fastened”
Pb = “the passenger seat belt is fastened”

Write a logic equation for W that expresses the following sentence: “If all 
the doors of the car are closed, and the key is in the ignition, and either the 
driver’s seat belt is not fastened or there is a passenger in the passenger seat 
and the passenger’s seat belt is not fastened, then the seatbelt warning light 
should be on.”

	 7.	 �Consider the following logic variables for a car:
M = “the motor is running”
Db = “the driver’s seat belt is fastened”

In the early 1970s the government ordered all seat belt warnings to be tied to the 
motor in a manner expressed by the following sentence: “If the driver’s seat belt 
is not fastened, then the motor cannot be running.”

	 a.	 �Write a logic equation for M in terms of Db that expresses this sentence.
	 b.	 �Write a truth table for that logic equation.

�In practice, this seat belt light logic caused problems. Think of trying to open a 
manual garage door or pick up the mail from a driveway mailbox. The govern-
ment soon retreated from an aroused public. Ans.: a. M = Db; b. see table below.
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Db M

0 0
1 1

	 9.	 �Consider the sentence “If a customer at a restaurant is over 21 and shows 
proper identification, then she can order an alcoholic beverage.” Using the fol-
lowing logic variables:

A = “a customer at a restaurant orders an alcoholic beverage”
I = “the customer shows proper identification”
M = “a customer at a restaurant is over 21”

a.	� Express this sentence as a logic equation, and
b.	� write a truth table for the logic equation.

T L P

0 0 0
0 1 1
1 0 1
1 1 1

	 9.	 �Consider the following variables expressing a football team’s strategy.
T = “it is third down”
L = “we must gain more than 8 yards to get a first down”
P = “we will throw a pass”

The team’s strategy is expressed by this truth table. Write a logic equation for 
P in terms of  T and L. (Ans.: P = T + L)

	 	  � 	 Exercises 10 and 11 use electrical circuits to effect logical statements. 
If you are uncertain about electrical circuits, you should review ahead 
to the chapter on Electrical Engineering. In particular, an electrical switch 
(shown as an inclined line when open) means there is no current flowing from 
the battery. The circuit is off and is then said to be in a “0” or a “false” state; 
contrarily, when the switch is closed, current flows from the battery and a volt-
age appears across the lamp L. The circuit is now in an “on” position and is 
said to be “1” or a “true” state.

	10.	 �Consider the following electric circuit and the variables L = “the light is on,” 
A = “switch A is closed,” and B = “switch B is closed.” Express the relationship 
depicted by the electric circuit as a logic equation for L in terms of A and B. 
(Ans.: L = A + B.)

A B

L
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	11.	 �Consider the following circuit diagram and the variables L = “the light is on,” 
A = “switch A is closed,” B = “switch B is closed,” and C = “switch C is closed.” 
Write a logic equation for L in terms of A, B, and C.

A

B C

L

	12.	 �Consider the following logic variables for a car:
	 1.	 �W = “the seat belt warning light is on”
	 2.	 �Ps = “there is a passenger in the passenger seat”
	 3.	 �Db = “the driver’s seat belt is fastened”
	 4.	 �Pb = “the passenger seat belt is fastened”

Draw a circuit diagram for the logic equation W = Db′+ (Ps · Pb′).
	13.	 �Explain the following sentences.
	 a)	 �“There are 10 kinds of people in the world, those who understand binary 

numbers, and those who don’t”.
	 b)	 �“Binary is as easy as 1, 10, 11”.
	14.	 �Convert the following numbers from binary to decimal: (a) 110, (b) 1110, and 

(c) 101,011.  Partial Ans.: (a) in the table below.

– 25 24 23 22 21 20 Decimal 
equivalent

– 32 16 8 4 2 1 –
(a) 110 0 × 32 0 × 16 0 × 8 1 × 4 1 × 2 0 × 1 6
(b) 1110
(c) 101011

	15.	 �Convert the following numbers from decimal to binary: (a) 53, (b) 446, and (c) 
1492. Partial Ans: (a) in the table below.

Decimal 1024 512 256 128 64 32 16 8 4 2 1
Binary place 210 29 28 27 26 25 24 23 22 21 20

(a) 53 0 0 0 0 0 1 1 0 1 0 1
(b) 446
(c) 1492

	16.	 �Do the binary additions in the table below. Check your answer by convert-
ing each binary number into decimal. Partial Ans.: the first addition in the 
table.



203  Exercises

Binary Decimal Binary Decimal Binary Decimal

1010 10 11,101 10,111
+110 6 +10,011 +10
10000 16

	17.	 �Do the binary subtractions in the table below. Check your answer by convert-
ing each binary number into decimal. Partial Ans.: The first subtraction in 
the table.

Binary Decimal Binary Decimal Binary Decimal

1010 10 11,101 10,000
−110 −6 −10,011 −1
0100 4

	18.	 �If a powerful race car has an (A/F)Mass of 12.0 (kg air)/(kg fuel), and the air 
intake draws in 1.000 kg of air per second, how much fuel must be injected 
every second? Solve in binary to three significant binary digits. (Ans. 
0.000,101 kg.)

	19.	 �Suppose we want to devise a binary code to represent the fuel levels in a car:
	 a.	 �If we need only to describe the possible levels (empty, 1/4 full, 1/2 full, 3/4 

full, and full), how many bits are needed?
	 b.	 �Give one possible binary code that describes the levels in (a).
	 c.	 �If we need to describe the levels (empty, 1/8 full, 1/4 full, 3/8 full, 1/2 full, 

5/8 full, 3/4 full, 7/8 full, and full), how many bits would be needed?
	 d.	 �If we used an 8-bit code, how many levels could we represent?
	20.	 �Construct a spreadsheet8 that converts binary numbers from 0 to 111 to deci-

mal numbers, print as formulae using the “control tilde” command. Check 
your spreadsheet against Exercise14. (Ans. e.g., binary 110 ≡ 1 × 22 + 1 × 21 
+ 0 × 20 = decimal 6.)

	21.	 �Construct a spreadsheet that converts decimal number 53 to binary. Print 
as formulae using the “control tilde” command. Check your spreadsheet 
against Exercise 15. Hint: 5 (decimal) can be divided by 22 to yield an 
integer “1” and remainder 1; 1 can’t be divided by 21 [therefore, integer 
“0”]; and “1” can be divided by 20 for the last integer “1.” Check for a 
spreadsheet function that will divide two numbers and display their result 
with no remainder.

	22.	 �Construct a spreadsheet that does binary subtraction with one’s complement. 
Test it on Exercise 17.

8Spreadsheets have some built-in functions for decimal conversions to and from binary. It is recom-
mended that you try first to use the actual mathematical functions described in this chapter and then 
check your answers using these functions to confirm those answers.
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	23.	 �In the game “Rock, Scissors, Paper” we have the following rules:

Rock breaks scissors
Scissors cuts paper
Paper covers rock

	 	  �If we were to create a code to represent the three entities, Rock, Scissors, and 
Paper, we would need two bits. Suppose we have the following code, where 
we call the first bit X and the second bit Y:

X Y

Rock: 0 0
Scissors: 0 1
Paper: 1 0

	 	  � 	 Now if we have two players who can each choose one of these codes, we 
can play the game. For example,

Player 1 Rock (0,0) Player 2 Scissors (0,1) Player 1 wins
Player 1 Scissors (0,1) Player 2 Scissors (0,1) Tie
Player 1 Rock (0,0) Player 2 Paper (1,0) Player 2 wins

	 	  � 	 We see that there are three possible outcomes of the game: Player 1 wins, 
Tie, Player 2 wins. Complete the table below that describes all the possible 
outcomes of the game.

Player 1
X,Y

Player 2
X,Y Player 1 Wins Tie Player 2 Wins

0,0 0,0 0 1 0
0,0 0,1 1 0 0
0,0 1,0
0,1 0,0
0,1 0,1
0,1 1,0
1,0 0,0
1,0 0,1
1,0 1,0
Totals

	24.	 �A company purchased a computer program for your part-time job with them. 
The license agreement states that you can make a backup copy, but you can 
only use the program on one computer at a time. Since you have permission to 
make a backup copy, why not make copies for friends? What do you do? (Use 
the Engineering Ethics Matrix.)
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	 a.	 �Go ahead, since your friends only use one computer at a time, and these are 
backup copies.

	 b.	 �Make the backup copy but sharing it with anyone clearly violates the 
license agreement.

	 c.	 �Ask your supervisor if you can use the backup copy at home, and then 
make as many copies as you wish.

	 d.	 �Use the program discretely, since software license agreements can’t be 
enforced anyway.

	25.	 �You are a software engineer at a small company. You have written a software 
program that will be used by a major manufacturer in a popular product line. 
Your supervisor asks you to install a “back door” into the program that no one 
will know about so that he can monitor its use by the public. What do you do? 
(Use the Engineering Ethics Matrix.)

	 a.	 �Install the back door, since it sounds like a fun experiment.
	 b.	 �Tell your supervisor that you can’t do it without authorization from the end 

user.
	 c.	 �Install the back door but then deactivate it before the software is 

implemented.
	 d.	 �Stall your supervisor while you look for another job.
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